1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
//! Provides userspace access to a CRC unit.
//!
//! ## Instantiation
//!
//! Instantiate the capsule for use as a system call driver with a hardware
//! implementation and a `Grant` for the `App` type, and set the result as a
//! client of the hardware implementation. For example, using the SAM4L's `CRCU`
//! driver:
//!
//! ```rust
//! let crc = static_init!(
//!     capsules::crc::Crc<'static, sam4l::crccu::Crccu<'static>>,
//!     capsules::crc::Crc::new(&mut sam4l::crccu::CRCCU, kernel::Grant::create()));
//! sam4l::crccu::CRCCU.set_client(crc);
//!
//! ```
//!
//! ## CRC Algorithms
//!
//! The capsule supports two general purpose CRC algorithms, as well as a few
//! hardware specific algorithms implemented on the Atmel SAM4L.
//!
//! In the values used to identify polynomials below, more-significant bits
//! correspond to higher-order terms, and the most significant bit is omitted
//! because it always equals one.  All algorithms listed here consume each input
//! byte from most-significant bit to least-significant.
//!
//! ### CRC-32
//!
//! __Polynomial__: `0x04C11DB7`
//!
//! This algorithm is used in Ethernet and many other applications. It bit-
//! reverses and then bit-inverts the output.
//!
//! ### CRC-32C
//!
//! __Polynomial__: `0x1EDC6F41`
//!
//! Bit-reverses and then bit-inverts the output. It *may* be equivalent to
//! various CRC functions using the same name.
//!
//! ### SAM4L-16
//!
//! __Polynomial__: `0x1021`
//!
//! This algorithm does no post-processing on the output value. The sixteen-bit
//! CRC result is placed in the low-order bits of the returned result value, and
//! the high-order bits will all be set.  That is, result values will always be
//! of the form `0xFFFFxxxx` for this algorithm.  It can be performed purely in
//! hardware on the SAM4L.
//!
//! ### SAM4L-32
//!
//! __Polynomial__: `0x04C11DB7`
//!
//! This algorithm uses the same polynomial as `CRC-32`, but does no post-
//! processing on the output value.  It can be perfomed purely in hardware on
//! the SAM4L.
//!
//! ### SAM4L-32C
//!
//! __Polynomial__: `0x1EDC6F41`
//!
//! This algorithm uses the same polynomial as `CRC-32C`, but does no post-
//! processing on the output value.  It can be performed purely in hardware on
//! the SAM4L.

use core::cell::Cell;
use kernel::{AppId, AppSlice, Callback, Driver, Grant, ReturnCode, Shared};
use kernel::hil;
use kernel::hil::crc::CrcAlg;
use kernel::process::Error;

/// Syscall number
pub const DRIVER_NUM: usize = 0x40002;

/// An opaque value maintaining state for one application's request
#[derive(Default)]
pub struct App {
    callback: Option<Callback>,
    buffer: Option<AppSlice<Shared, u8>>,

    // if Some, the application is awaiting the result of a CRC
    //   using the given algorithm
    waiting: Option<hil::crc::CrcAlg>,
}

/// Struct that holds the state of the CRC driver and implements the `Driver` trait for use by
/// processes through the system call interface.
pub struct Crc<'a, C: hil::crc::CRC + 'a> {
    crc_unit: &'a C,
    apps: Grant<App>,
    serving_app: Cell<Option<AppId>>,
}

impl<'a, C: hil::crc::CRC> Crc<'a, C> {
    /// Create a `Crc` driver
    ///
    /// The argument `crc_unit` must implement the abstract `CRC`
    /// hardware interface.  The argument `apps` should be an empty
    /// kernel `Grant`, and will be used to track application
    /// requests.
    ///
    /// ## Example
    ///
    /// ```
    /// capsules::crc::Crc::new(&sam4l::crccu::CRCCU, kernel::Grant::create()),
    ///
    /// ```
    ///
    pub fn new(crc_unit: &'a C, apps: Grant<App>) -> Crc<'a, C> {
        Crc {
            crc_unit: crc_unit,
            apps: apps,
            serving_app: Cell::new(None),
        }
    }

    fn serve_waiting_apps(&self) {
        if self.serving_app.get().is_some() {
            // A computation is in progress
            return;
        }

        // Find a waiting app and start its requested computation
        let mut found = false;
        for app in self.apps.iter() {
            app.enter(|app, _| {
                if let Some(alg) = app.waiting {
                    if let Some(buffer) = app.buffer.take() {
                        let r = self.crc_unit.compute(buffer.as_ref(), alg);
                        if r == ReturnCode::SUCCESS {
                            // The unit is now computing a CRC for this app
                            self.serving_app.set(Some(app.appid()));
                            found = true;
                        } else {
                            // The app's request failed
                            if let Some(mut callback) = app.callback {
                                callback.schedule(From::from(r), 0, 0);
                            }
                            app.waiting = None;
                        }

                        // Put back taken buffer
                        app.buffer = Some(buffer);
                    }
                }
            });
            if found {
                break;
            }
        }

        if !found {
            // Power down the CRC unit until next needed
            self.crc_unit.disable();
        }
    }
}

/// Processes can use the CRC system call driver to compute CRC redundancy checks over process
/// memory.
///
/// At a high level, the client first provides a callback for the result of computations through
/// the `subscribe` system call and `allow`s the driver access to the buffer over-which to compute.
/// Then, it initiates a CRC computation using the `command` system call. See function-specific
/// comments for details.
impl<'a, C: hil::crc::CRC> Driver for Crc<'a, C> {
    /// The `allow` syscall for this driver supports the single
    /// `allow_num` zero, which is used to provide a buffer over which
    /// to compute a CRC computation.
    ///
    fn allow(&self, appid: AppId, allow_num: usize, slice: AppSlice<Shared, u8>) -> ReturnCode {
        match allow_num {
            // Provide user buffer to compute CRC over
            0 => self.apps
                .enter(appid, |app, _| {
                    app.buffer = Some(slice);
                    ReturnCode::SUCCESS
                })
                .unwrap_or_else(|err| err.into()),
            _ => ReturnCode::ENOSUPPORT,
        }
    }

    /// The `subscribe` syscall supports the single `subscribe_number`
    /// zero, which is used to provide a callback that will receive the
    /// result of a CRC computation.  The signature of the callback is
    ///
    /// ```
    /// fn callback(status, result);
    /// ```
    ///
    /// where
    ///
    ///   * `status` is indicates whether the computation
    ///     succeeded. The status `EBUSY` indicates the unit is already
    ///     busy. The status `ESIZE` indicates the provided buffer is
    ///     too large for the unit to handle.
    ///
    ///   * `result` is the result of the CRC computation when `status == EBUSY`.
    ///
    fn subscribe(&self, subscribe_num: usize, callback: Callback) -> ReturnCode {
        match subscribe_num {
            // Set callback for CRC result
            0 => self.apps
                .enter(callback.app_id(), |app, _| {
                    app.callback = Some(callback);
                    ReturnCode::SUCCESS
                })
                .unwrap_or_else(|err| err.into()),
            _ => ReturnCode::ENOSUPPORT,
        }
    }

    /// The command system call for this driver return meta-data about the driver and kicks off
    /// CRC computations returned through callbacks.
    ///
    /// ### Command Numbers
    ///
    ///   *   `0`: Returns non-zero to indicate the driver is present
    ///
    ///   *   `1`: Returns the CRC unit's version value.  This is provided
    ///       in order to be complete, but has limited utility as no
    ///       consistent semantics are specified.
    ///
    ///   *   `2`: Requests that a CRC be computed over the buffer
    ///       previously provided by `allow`.  If none was provided,
    ///       this command will return `EINVAL`.
    ///
    ///       This command's driver-specific argument indicates what CRC
    ///       algorithm to perform, as listed below.  If an invalid
    ///       algorithm specifier is provided, this command will return
    ///       `EINVAL`.
    ///
    ///       If a callback was not previously registered with
    ///       `subscribe`, this command will return `EINVAL`.
    ///
    ///       If a computation has already been requested by this
    ///       application but the callback has not yet been invoked to
    ///       receive the result, this command will return `EBUSY`.
    ///
    ///       When `SUCCESS` is returned, this means the request has been
    ///       queued and the callback will be invoked when the CRC
    ///       computation is complete.
    ///
    /// ### Algorithm
    ///
    /// The CRC algorithms supported by this driver are listed below.  In
    /// the values used to identify polynomials, more-significant bits
    /// correspond to higher-order terms, and the most significant bit is
    /// omitted because it always equals one.  All algorithms listed here
    /// consume each input byte from most-significant bit to
    /// least-significant.
    ///
    ///   * `0: CRC-32`  This algorithm is used in Ethernet and many other
    ///   applications.  It uses polynomial 0x04C11DB7 and it bit-reverses
    ///   and then bit-inverts the output.
    ///
    ///   * `1: CRC-32C`  This algorithm uses polynomial 0x1EDC6F41 (due
    ///   to Castagnoli) and it bit-reverses and then bit-inverts the
    ///   output.  It *may* be equivalent to various CRC functions using
    ///   the same name.
    ///
    ///   * `2: SAM4L-16`  This algorithm uses polynomial 0x1021 and does
    ///   no post-processing on the output value. The sixteen-bit CRC
    ///   result is placed in the low-order bits of the returned result
    ///   value, and the high-order bits will all be set.  That is, result
    ///   values will always be of the form `0xFFFFxxxx` for this
    ///   algorithm.  It can be performed purely in hardware on the SAM4L.
    ///
    ///   * `3: SAM4L-32`  This algorithm uses the same polynomial as
    ///   `CRC-32`, but does no post-processing on the output value.  It
    ///   can be perfomed purely in hardware on the SAM4L.
    ///
    ///   * `4: SAM4L-32C`  This algorithm uses the same polynomial as
    ///   `CRC-32C`, but does no post-processing on the output value.  It
    ///   can be performed purely in hardware on the SAM4L.
    fn command(&self, command_num: usize, algorithm: usize, _: usize, appid: AppId) -> ReturnCode {
        match command_num {
            // This driver is present
            0 => ReturnCode::SUCCESS,

            // Get version of CRC unit
            1 => ReturnCode::SuccessWithValue {
                value: self.crc_unit.get_version() as usize,
            },

            // Request a CRC computation
            2 => {
                let result = if let Some(alg) = alg_from_user_int(algorithm) {
                    self.apps
                        .enter(appid, |app, _| {
                            if app.waiting.is_some() {
                                // Each app may make only one request at a time
                                ReturnCode::EBUSY
                            } else {
                                if app.callback.is_some() && app.buffer.is_some() {
                                    app.waiting = Some(alg);
                                    ReturnCode::SUCCESS
                                } else {
                                    ReturnCode::EINVAL
                                }
                            }
                        })
                        .unwrap_or_else(|err| err.into())
                } else {
                    ReturnCode::EINVAL
                };

                if result == ReturnCode::SUCCESS {
                    self.serve_waiting_apps();
                }
                result
            }

            _ => ReturnCode::ENOSUPPORT,
        }
    }
}

impl<'a, C: hil::crc::CRC> hil::crc::Client for Crc<'a, C> {
    fn receive_result(&self, result: u32) {
        if let Some(appid) = self.serving_app.get() {
            self.apps
                .enter(appid, |app, _| {
                    if let Some(mut callback) = app.callback {
                        callback.schedule(From::from(ReturnCode::SUCCESS), result as usize, 0);
                    }
                    app.waiting = None;
                })
                .unwrap_or_else(|err| match err {
                    Error::OutOfMemory => {}
                    Error::AddressOutOfBounds => {}
                    Error::NoSuchApp => {}
                });

            self.serving_app.set(None);
            self.serve_waiting_apps();
        } else {
            // Ignore orphaned computation
        }
    }
}

fn alg_from_user_int(i: usize) -> Option<hil::crc::CrcAlg> {
    match i {
        0 => Some(CrcAlg::Crc32),
        1 => Some(CrcAlg::Crc32C),
        2 => Some(CrcAlg::Sam4L16),
        3 => Some(CrcAlg::Sam4L32),
        4 => Some(CrcAlg::Sam4L32C),
        _ => None,
    }
}