1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
//! Implementation of the SAM4L TWIMS peripheral.
//!
//! The implementation, especially of repeated starts, is quite sensitive to the
//! ordering of operations (e.g. setup DMA, then set command register, then next
//! command register, then enable, then start the DMA transfer). The placement
//! of writes to interrupt enable/disable registers is also significant, but not
//! refactored in such a way that's very logical right now.
//!
//! The point is that until this changes, and this notice is taken away: IF YOU
//! CHANGE THIS DRIVER, TEST RIGOROUSLY!!!

use core::cell::Cell;
use dma::{DMAChannel, DMAClient, DMAPeripheral};
use kernel::common::VolatileCell;
use kernel::common::take_cell::TakeCell;
use kernel::hil;
use pm;

// Listing of all registers related to the TWIM peripheral.
// Section 27.9 of the datasheet
#[repr(C)]
#[allow(dead_code)]
struct TWIMRegisters {
    control: VolatileCell<u32>,
    clock_waveform_generator: VolatileCell<u32>,
    smbus_timing: VolatileCell<u32>,
    command: VolatileCell<u32>,
    next_command: VolatileCell<u32>,
    receive_holding: VolatileCell<u32>,
    transmit_holding: VolatileCell<u32>,
    status: VolatileCell<u32>,
    interrupt_enable: VolatileCell<u32>,
    interrupt_disable: VolatileCell<u32>,
    interrupt_mask: VolatileCell<u32>,
    status_clear: VolatileCell<u32>,
    parameter: VolatileCell<u32>,
    version: VolatileCell<u32>,
    hsmode_clock_waveform_generator: VolatileCell<u32>,
    slew_rate: VolatileCell<u32>,
    hsmod_slew_rate: VolatileCell<u32>,
}

// Listing of all registers related to the TWIS peripheral.
// Section 28.9 of the datasheet
#[repr(C)]
#[allow(dead_code)]
struct TWISRegisters {
    control: VolatileCell<u32>,
    nbytes: VolatileCell<u32>,
    timing: VolatileCell<u32>,
    receive_holding: VolatileCell<u32>,
    transmit_holding: VolatileCell<u32>,
    packet_error_check: VolatileCell<u32>,
    status: VolatileCell<u32>,
    interrupt_enable: VolatileCell<u32>,
    interrupt_disable: VolatileCell<u32>,
    interrupt_mask: VolatileCell<u32>,
    status_clear: VolatileCell<u32>,
    parameter: VolatileCell<u32>,
    version: VolatileCell<u32>,
    hsmode_timing: VolatileCell<u32>,
    slew_rate: VolatileCell<u32>,
    hsmod_slew_rate: VolatileCell<u32>,
}

// The addresses in memory (7.1 of manual) of the TWIM peripherals
const I2C_BASE_ADDRS: [*mut TWIMRegisters; 4] = [
    0x40018000 as *mut TWIMRegisters,
    0x4001C000 as *mut TWIMRegisters,
    0x40078000 as *mut TWIMRegisters,
    0x4007C000 as *mut TWIMRegisters,
];

// The addresses in memory (7.1 of manual) of the TWIM peripherals
const I2C_SLAVE_BASE_ADDRS: [*mut TWISRegisters; 2] = [
    0x40018400 as *mut TWISRegisters,
    0x4001C400 as *mut TWISRegisters,
];

// There are four TWIM (two wire master interface) peripherals on the SAM4L.
// These likely won't all be used for I2C, but we let the platform decide
// which one to use.
#[derive(Clone, Copy)]
pub enum Location {
    I2C00, // TWIMS0
    I2C01, // TWIMS1
    I2C02, // TWIM2
    I2C03, // TWIM3
}

// Three main I2C speeds
#[derive(Clone, Copy)]
pub enum Speed {
    Standard100k,
    Fast400k,
    FastPlus1M,
}

// This represents an abstraction of the peripheral hardware.
pub struct I2CHw {
    registers: *mut TWIMRegisters, // Pointer to the I2C registers in memory
    slave_registers: Option<*mut TWISRegisters>, // Pointer to the I2C TWIS registers in memory
    master_clock: pm::Clock,
    slave_clock: Option<pm::Clock>,
    dma: Cell<Option<&'static DMAChannel>>,
    dma_pids: (DMAPeripheral, DMAPeripheral),
    master_client: Cell<Option<&'static hil::i2c::I2CHwMasterClient>>,
    slave_client: Cell<Option<&'static hil::i2c::I2CHwSlaveClient>>,
    on_deck: Cell<Option<(DMAPeripheral, usize)>>,

    slave_enabled: Cell<bool>,
    my_slave_address: Cell<u8>,
    slave_read_buffer: TakeCell<'static, [u8]>,
    slave_read_buffer_len: Cell<u8>,
    slave_read_buffer_index: Cell<u8>,
    slave_write_buffer: TakeCell<'static, [u8]>,
    slave_write_buffer_len: Cell<u8>,
    slave_write_buffer_index: Cell<u8>,
}

pub static mut I2C0: I2CHw = I2CHw::new(
    I2C_BASE_ADDRS[0],
    Some(I2C_SLAVE_BASE_ADDRS[0]),
    pm::Clock::PBA(pm::PBAClock::TWIM0),
    Some(pm::Clock::PBA(pm::PBAClock::TWIS0)),
    DMAPeripheral::TWIM0_RX,
    DMAPeripheral::TWIM0_TX,
);
pub static mut I2C1: I2CHw = I2CHw::new(
    I2C_BASE_ADDRS[1],
    Some(I2C_SLAVE_BASE_ADDRS[1]),
    pm::Clock::PBA(pm::PBAClock::TWIM1),
    Some(pm::Clock::PBA(pm::PBAClock::TWIS1)),
    DMAPeripheral::TWIM1_RX,
    DMAPeripheral::TWIM1_TX,
);
pub static mut I2C2: I2CHw = I2CHw::new(
    I2C_BASE_ADDRS[2],
    None,
    pm::Clock::PBA(pm::PBAClock::TWIM2),
    None,
    DMAPeripheral::TWIM2_RX,
    DMAPeripheral::TWIM2_TX,
);
pub static mut I2C3: I2CHw = I2CHw::new(
    I2C_BASE_ADDRS[3],
    None,
    pm::Clock::PBA(pm::PBAClock::TWIM3),
    None,
    DMAPeripheral::TWIM3_RX,
    DMAPeripheral::TWIM3_TX,
);

pub const START: usize = 1 << 13;
pub const STOP: usize = 1 << 14;
pub const ACKLAST: usize = 1 << 25;

// Need to implement the `new` function on the I2C device as a constructor.
// This gets called from the device tree.
impl I2CHw {
    const fn new(
        base_addr: *mut TWIMRegisters,
        slave_base_addr: Option<*mut TWISRegisters>,
        master_clock: pm::Clock,
        slave_clock: Option<pm::Clock>,
        dma_rx: DMAPeripheral,
        dma_tx: DMAPeripheral,
    ) -> I2CHw {
        I2CHw {
            registers: base_addr as *mut TWIMRegisters,
            slave_registers: slave_base_addr,
            master_clock: master_clock,
            slave_clock: slave_clock,
            dma: Cell::new(None),
            dma_pids: (dma_rx, dma_tx),
            master_client: Cell::new(None),
            slave_client: Cell::new(None),
            on_deck: Cell::new(None),

            slave_enabled: Cell::new(false),
            my_slave_address: Cell::new(0),
            slave_read_buffer: TakeCell::empty(),
            slave_read_buffer_len: Cell::new(0),
            slave_read_buffer_index: Cell::new(0),
            slave_write_buffer: TakeCell::empty(),
            slave_write_buffer_len: Cell::new(0),
            slave_write_buffer_index: Cell::new(0),
        }
    }

    /// Set the clock prescaler and the time widths of the I2C signals
    /// in the CWGR register to make the bus run at a particular I2C speed.
    fn set_bus_speed(&self) {
        // Set I2C waveform timing parameters based on ASF code
        let system_frequency = pm::get_system_frequency();
        let mut exp = 0;
        let mut f_prescaled = system_frequency / 400000 / 2;
        while (f_prescaled > 0xff) && (exp <= 0x7) {
            // Increase the prescale factor, and update our frequency
            exp += 1;
            f_prescaled /= 2;
        }

        // Check that we have a valid setting
        if exp > 0x7 {
            panic!("Cannot setup I2C waveform timing with given system clock.");
        }

        let low = f_prescaled / 2;
        let high = f_prescaled - low;
        let data = 0;
        let stasto = f_prescaled;

        let cwgr = ((exp & 0x7) << 28) | ((data & 0xF) << 24) | ((stasto & 0xFF) << 16)
            | ((high & 0xFF) << 8) | ((low & 0xFF) << 0);
        let regs: &TWIMRegisters = unsafe { &*self.registers };
        regs.clock_waveform_generator.set(cwgr);
    }

    pub fn set_dma(&self, dma: &'static DMAChannel) {
        self.dma.set(Some(dma));
    }

    pub fn set_master_client(&self, client: &'static hil::i2c::I2CHwMasterClient) {
        self.master_client.set(Some(client));
    }

    pub fn set_slave_client(&self, client: &'static hil::i2c::I2CHwSlaveClient) {
        self.slave_client.set(Some(client));
    }

    pub fn handle_interrupt(&self) {
        use kernel::hil::i2c::Error;
        let regs: &TWIMRegisters = unsafe { &*self.registers };

        let old_status = regs.status.get();

        regs.status_clear.set(!0);

        let err = match old_status {
            x if x & (1 <<  8) != 0 /*ANACK*/  => Some(Error::AddressNak),
            x if x & (1 <<  9) != 0 /*DNACK*/  => Some(Error::DataNak),
            x if x & (1 << 10) != 0 /*ARBLST*/ => Some(Error::ArbitrationLost),
            x if x & (1 <<  3) != 0 /*CCOMP*/   => Some(Error::CommandComplete),
            _ => None
        };

        let on_deck = self.on_deck.get();
        self.on_deck.set(None);
        match on_deck {
            None => {
                regs.command.set(0);
                regs.next_command.set(0);

                err.map(|err| {
                    // enable, reset, disable
                    regs.control.set(0x1 << 0);
                    regs.control.set(0x1 << 7);
                    regs.control.set(0x1 << 1);

                    self.master_client.get().map(|client| {
                        let buf = match self.dma.get() {
                            Some(dma) => {
                                let b = dma.abort_xfer();
                                self.dma.set(Some(dma));
                                b
                            }
                            None => None,
                        };
                        buf.map(|buf| {
                            client.command_complete(buf, err);
                        });
                    });
                });
            }
            Some((dma_periph, len)) => {
                // Check to see if we are only trying to get one byte. If we
                // are, and the RXRDY bit is already set, then we already have
                // that byte in the RHR register. If we setup DMA after we
                // have the single byte we are looking for, everything breaks
                // because we will never get another byte and therefore
                // no more interrupts. So, we just read the byte we have
                // and call this I2C command complete.
                if (len == 1) && (old_status & 0x01 != 0) {
                    regs.command.set(0);
                    regs.next_command.set(0);

                    err.map(|err| {
                        // enable, reset, disable
                        regs.control.set(0x1 << 0);
                        regs.control.set(0x1 << 7);
                        regs.control.set(0x1 << 1);

                        self.master_client.get().map(|client| {
                            let buf = match self.dma.get() {
                                Some(dma) => {
                                    let b = dma.abort_xfer();
                                    self.dma.set(Some(dma));
                                    b
                                }
                                None => None,
                            };
                            buf.map(|buf| {
                                // Save the already read byte.
                                buf[0] = regs.receive_holding.get() as u8;
                                client.command_complete(buf, err);
                            });
                        });
                    });
                } else {
                    // Enable transaction error interrupts
                    regs.interrupt_enable.set(
                        (1 << 3)    // CCOMP   - Command completed
                                   | (1 << 8)    // ANAK   - Address not ACKd
                                   | (1 << 9)    // DNAK   - Data not ACKd
                                   | (1 << 10),
                    ); // ARBLST - Arbitration lost
                    self.dma.get().map(|dma| {
                        let buf = dma.abort_xfer().unwrap();
                        dma.prepare_xfer(dma_periph, buf, len);
                        dma.start_xfer();
                    });
                }
            }
        }
    }

    fn setup_xfer(&self, chip: u8, flags: usize, read: bool, len: u8) {
        let regs: &TWIMRegisters = unsafe { &*self.registers };

        // disable before configuring
        regs.control.set(0x1 << 1);

        let read = if read { 1 } else { 0 };
        let command = ((chip as usize) << 1) // 7 bit address at offset 1 (8th
                                             // bit is ignored anyway)
                    | flags  // START, STOP & ACKLAST flags
                    | (1 << 15) // VALID
                    | (len as usize) << 16 // NBYTES (at most 255)
                    | read;
        regs.command.set(command as u32);
        regs.next_command.set(0);

        // Enable transaction error interrupts
        regs.interrupt_enable.set(
            (1 << 3)    // CCOMP   - Command completed
                       | (1 << 8)    // ANAK   - Address not ACKd
                       | (1 << 9)    // DNAK   - Data not ACKd
                       | (1 << 10),
        ); // ARBLST - Abitration lost
    }

    fn setup_nextfer(&self, chip: u8, flags: usize, read: bool, len: u8) {
        let regs: &TWIMRegisters = unsafe { &*self.registers };

        // disable before configuring
        regs.control.set(0x1 << 1);

        let read = if read { 1 } else { 0 };
        let command = ((chip as usize) << 1) // 7 bit address at offset 1 (8th
                                             // bit is ignored anyway)
                    | flags  // START, STOP & ACKLAST flags
                    | (1 << 15) // VALID
                    | (len as usize) << 16 // NBYTES (at most 255)
                    | read;
        regs.next_command.set(command as u32);

        // Enable
        regs.control.set(0x1 << 0);
    }

    fn master_enable(&self) {
        let regs: &TWIMRegisters = unsafe { &*self.registers };

        // Enable to begin transfer
        regs.control.set(0x1 << 0);
    }

    pub fn write(&self, chip: u8, flags: usize, data: &'static mut [u8], len: u8) {
        self.dma.get().map(move |dma| {
            dma.enable();
            dma.prepare_xfer(self.dma_pids.1, data, len as usize);
            self.setup_xfer(chip, flags, false, len);
            self.master_enable();
            dma.start_xfer();
        });
    }

    pub fn read(&self, chip: u8, flags: usize, data: &'static mut [u8], len: u8) {
        self.dma.get().map(move |dma| {
            dma.enable();
            dma.prepare_xfer(self.dma_pids.0, data, len as usize);
            self.setup_xfer(chip, flags, true, len);
            self.master_enable();
            dma.start_xfer();
        });
    }

    pub fn write_read(&self, chip: u8, data: &'static mut [u8], split: u8, read_len: u8) {
        self.dma.get().map(move |dma| {
            dma.enable();
            dma.prepare_xfer(self.dma_pids.1, data, split as usize);
            self.setup_xfer(chip, START, false, split);
            self.setup_nextfer(chip, START | STOP, true, read_len);
            self.on_deck.set(Some((self.dma_pids.0, read_len as usize)));
            dma.start_xfer();
        });
    }

    fn disable_interrupts(&self) {
        let regs: &TWIMRegisters = unsafe { &*self.registers };
        regs.interrupt_disable.set(!0);
    }

    /// Handle possible interrupt for TWIS module.
    pub fn handle_slave_interrupt(&self) {
        self.slave_registers.map(|slave_registers| {
            let regs: &TWISRegisters = unsafe { &*slave_registers };

            // Get current status from the hardware.
            let status = regs.status.get();
            let imr = regs.interrupt_mask.get();
            let interrupts = status & imr;

            // Check for errors.
            if interrupts & ((1 << 14) | (1 << 13) | (1 << 12) | (1 << 7) | (1 << 6)) > 0 {
                // From the datasheet: If a bus error (misplaced START or STOP)
                // condition is detected, the SR.BUSERR bit is set and the TWIS
                // waits for a new START condition.
                if interrupts & (1 << 14) > 0 {
                    // Restart and wait for the next start byte
                    regs.status_clear.set(status);
                    return;
                }

                panic!("ERR 0x{:x}", interrupts);
            }

            // Check if we got the address match interrupt
            if interrupts & (1 << 16) > 0 {
                regs.nbytes.set(0);

                // Did we get a read or a write?
                if status & (1 << 5) > 0 {
                    // This means the slave is in transmit mode, AKA we got a
                    // read.

                    // Clear the byte transfer done if set (copied from ASF)
                    regs.status_clear.set(1 << 23);

                    // Setup interrupts that we now care about
                    regs.interrupt_enable.set((1 << 3) | (1 << 23));
                    regs.interrupt_enable
                        .set((1 << 14) | (1 << 13) | (1 << 12) | (1 << 7) | (1 << 6));

                    if self.slave_read_buffer.is_some() {
                        // Have buffer to send, start reading
                        self.slave_read_buffer_index.set(0);
                        let len = self.slave_read_buffer_len.get();

                        if len >= 1 {
                            self.slave_read_buffer.map(|buffer| {
                                regs.transmit_holding.set(buffer[0] as u32);
                            });
                            self.slave_read_buffer_index.set(1);
                        } else {
                            // Send dummy byte
                            regs.transmit_holding.set(0x2e);
                        }

                        // Make it happen by clearing status.
                        regs.status_clear.set(status);
                    } else {
                        // Call to upper layers asking for a buffer to send
                        self.slave_client.get().map(|client| {
                            client.read_expected();
                        });
                    }
                } else {
                    // Slave is in receive mode, AKA we got a write.

                    // Get transmission complete and rxready interrupts.
                    regs.interrupt_enable.set((1 << 3) | (1 << 0));

                    // Set index to 0
                    self.slave_write_buffer_index.set(0);

                    if self.slave_write_buffer.is_some() {
                        // Clear to continue with existing buffer.
                        regs.status_clear.set(status);
                    } else {
                        // Call to upper layers asking for a buffer to
                        // read into.
                        self.slave_client.get().map(|client| {
                            client.write_expected();
                        });
                    }
                }
            } else {
                // Did not get address match interrupt.

                if interrupts & (1 << 3) > 0 {
                    // Transmission complete

                    let nbytes = regs.nbytes.get();

                    regs.interrupt_disable.set(0xFFFFFFFF);
                    regs.interrupt_enable.set(1 << 16);
                    regs.status_clear.set(status);

                    if status & (1 << 5) > 0 {
                        // read
                        self.slave_client.get().map(|client| {
                            self.slave_read_buffer.take().map(|buffer| {
                                client.command_complete(
                                    buffer,
                                    nbytes as u8,
                                    hil::i2c::SlaveTransmissionType::Read,
                                );
                            });
                        });
                    } else {
                        // write

                        let len = self.slave_write_buffer_len.get();
                        let idx = self.slave_write_buffer_index.get();

                        if len > idx {
                            self.slave_write_buffer.map(|buffer| {
                                buffer[idx as usize] = regs.receive_holding.get() as u8;
                            });
                            self.slave_write_buffer_index.set(idx + 1);
                        } else {
                            // Just drop on floor
                            regs.receive_holding.get();
                        }

                        self.slave_client.get().map(|client| {
                            self.slave_write_buffer.take().map(|buffer| {
                                client.command_complete(
                                    buffer,
                                    nbytes as u8,
                                    hil::i2c::SlaveTransmissionType::Write,
                                );
                            });
                        });
                    }
                } else if interrupts & (1 << 23) > 0 {
                    // Byte transfer finished. Send the next byte from the
                    // buffer.

                    if self.slave_read_buffer.is_some() {
                        // Have buffer to send, start reading
                        let len = self.slave_read_buffer_len.get();
                        let idx = self.slave_read_buffer_index.get();

                        if len > idx {
                            self.slave_read_buffer.map(|buffer| {
                                regs.transmit_holding.set(buffer[idx as usize] as u32);
                            });
                            self.slave_read_buffer_index.set(idx + 1);
                        } else {
                            // Send dummy byte
                            regs.transmit_holding.set(0xdf);
                        }
                    } else {
                        // Send a default byte
                        regs.transmit_holding.set(0xdc);
                    }

                    // Make it happen by clearing status.
                    regs.status_clear.set(status);
                } else if interrupts & (1 << 0) > 0 {
                    // Receive byte ready.

                    if self.slave_write_buffer.is_some() {
                        // Check that the BTF byte is set at the beginning of
                        // the transfer. Sometimes a spurious RX ready interrupt
                        // happens at the beginning (right after the address
                        // byte) that we need to ignore, and checking the BTF
                        // bit fixes that. However, sometimes in the middle of a
                        // transfer we get an RXREADY interrupt where the BTF
                        // bit is NOT set. I don't know why.
                        if status & (1 << 23) > 0 || self.slave_write_buffer_index.get() > 0 {
                            // Have buffer to read into
                            let len = self.slave_write_buffer_len.get();
                            let idx = self.slave_write_buffer_index.get();

                            if len > idx {
                                self.slave_write_buffer.map(|buffer| {
                                    buffer[idx as usize] = regs.receive_holding.get() as u8;
                                });
                                self.slave_write_buffer_index.set(idx + 1);
                            } else {
                                // Just drop on floor
                                regs.receive_holding.get();
                            }
                        } else {
                            // Just drop on floor
                            regs.receive_holding.get();
                        }
                    } else {
                        // Just drop on floor
                        regs.receive_holding.get();
                    }

                    regs.status_clear.set(status);
                }
            }
        });
    }

    /// Receive the bytes the I2C master is writing to us.
    pub fn slave_write_receive(&self, buffer: &'static mut [u8], len: u8) {
        self.slave_write_buffer.replace(buffer);
        self.slave_write_buffer_len.set(len);

        if self.slave_enabled.get() {
            self.slave_registers.map(|slave_registers| {
                let regs: &TWISRegisters = unsafe { &*slave_registers };

                let status = regs.status.get();
                let imr = regs.interrupt_mask.get();
                let interrupts = status & imr;

                // Address match status bit still set, so we need to tell the TWIS
                // to continue.
                if (interrupts & (1 << 16) > 0) && (status & (1 << 5) == 0) {
                    regs.status_clear.set(status);
                }
            });
        }
    }

    /// Prepare a buffer for the I2C master to read from after a read call.
    pub fn slave_read_send(&self, buffer: &'static mut [u8], len: u8) {
        self.slave_read_buffer.replace(buffer);
        self.slave_read_buffer_len.set(len);
        self.slave_read_buffer_index.set(0);

        if self.slave_enabled.get() {
            // Check to see if we should send the first byte.
            self.slave_registers.map(|slave_registers| {
                let regs: &TWISRegisters = unsafe { &*slave_registers };

                let status = regs.status.get();
                let imr = regs.interrupt_mask.get();
                let interrupts = status & imr;

                // Address match status bit still set. We got this function
                // call in response to an incoming read. Send the first
                // byte.
                if (interrupts & (1 << 16) > 0) && (status & (1 << 5) > 0) {
                    regs.status_clear.set(1 << 23);

                    let len = self.slave_read_buffer_len.get();

                    if len >= 1 {
                        self.slave_read_buffer.map(|buffer| {
                            regs.transmit_holding.set(buffer[0] as u32);
                        });
                        self.slave_read_buffer_index.set(1);
                    } else {
                        // Send dummy byte
                        regs.transmit_holding.set(0x75);
                    }

                    // Make it happen by clearing status.
                    regs.status_clear.set(status);
                }
            });
        }
    }

    fn slave_disable_interrupts(&self) {
        self.slave_registers.map(|slave_registers| {
            let regs: &TWISRegisters = unsafe { &*slave_registers };
            regs.interrupt_disable.set(!0);
        });
    }

    pub fn slave_set_address(&self, address: u8) {
        self.my_slave_address.set(address);
    }

    pub fn slave_listen(&self) {
        self.slave_registers.map(|slave_registers| {
            let regs: &TWISRegisters = unsafe { &*slave_registers };

            // Enable and configure
            let control = (((self.my_slave_address.get() as usize) & 0x7F) << 16) |
                           (1 << 14) | // SOAM - stretch on address match
                           (1 << 13) | // CUP - count nbytes up
                           (1 << 4)  | // STREN - stretch clock enable
                           (1 << 2); //.. SMATCH - ack on slave address
            regs.control.set(control as u32);

            // Set this separately because that makes the HW happy.
            regs.control.set((control as u32) | 0x1);
        });
    }
}

impl DMAClient for I2CHw {
    fn xfer_done(&self, _pid: DMAPeripheral) {}
}

impl hil::i2c::I2CMaster for I2CHw {
    /// This enables the entire I2C peripheral
    fn enable(&self) {
        // Enable the clock for the TWIM module
        unsafe {
            pm::enable_clock(self.master_clock);
        }

        //disable the i2c slave peripheral
        hil::i2c::I2CSlave::disable(self);

        let regs: &TWIMRegisters = unsafe { &*self.registers };

        // enable, reset, disable
        regs.control.set(0x1 << 0);
        regs.control.set(0x1 << 7);
        regs.control.set(0x1 << 1);

        // Init the bus speed
        self.set_bus_speed();

        // slew
        regs.slew_rate.set((0x2 << 28) | (7 << 16) | (7 << 0));

        // clear interrupts
        regs.status_clear.set(!0);
    }

    /// This disables the entire I2C peripheral
    fn disable(&self) {
        let regs: &TWIMRegisters = unsafe { &*self.registers };
        regs.control.set(0x1 << 1);
        unsafe {
            pm::disable_clock(self.master_clock);
        }
        self.disable_interrupts();
    }

    fn write(&self, addr: u8, data: &'static mut [u8], len: u8) {
        I2CHw::write(self, addr, START | STOP, data, len);
    }

    fn read(&self, addr: u8, data: &'static mut [u8], len: u8) {
        I2CHw::read(self, addr, START | STOP, data, len);
    }

    fn write_read(&self, addr: u8, data: &'static mut [u8], write_len: u8, read_len: u8) {
        I2CHw::write_read(self, addr, data, write_len, read_len)
    }
}

impl hil::i2c::I2CSlave for I2CHw {
    fn enable(&self) {
        self.slave_clock.map(|slave_clock| unsafe {
            pm::disable_clock(self.master_clock);
            pm::enable_clock(slave_clock);
        });

        self.slave_registers.map(|slave_registers| {
            let regs: &TWISRegisters = unsafe { &*slave_registers };

            // enable, reset, disable
            regs.control.set(0x1 << 0);
            regs.control.set(0x1 << 7);
            regs.control.set(0);

            // slew
            regs.slew_rate.set((0x2 << 28) | (7 << 0));

            // clear interrupts
            regs.status_clear.set(!0);

            // We want to interrupt only on slave address match so we can
            // wait for a message from a master and then decide what to do
            // based on read/write.
            regs.interrupt_enable.set((1 << 16));

            // Also setup all of the error interrupts.
            regs.interrupt_enable
                .set((1 << 14) | (1 << 13) | (1 << 12) | (1 << 7) | (1 << 6));
        });

        self.slave_enabled.set(true);
    }

    /// This disables the entire I2C peripheral
    fn disable(&self) {
        self.slave_enabled.set(false);

        self.slave_registers.map(|slave_registers| {
            let regs: &TWISRegisters = unsafe { &*slave_registers };

            regs.control.set(0);
            self.slave_clock.map(|slave_clock| unsafe {
                pm::disable_clock(slave_clock);
            });
        });
        self.slave_disable_interrupts();
    }

    fn set_address(&self, addr: u8) {
        self.slave_set_address(addr);
    }

    fn write_receive(&self, data: &'static mut [u8], max_len: u8) {
        self.slave_write_receive(data, max_len);
    }

    fn read_send(&self, data: &'static mut [u8], max_len: u8) {
        self.slave_read_send(data, max_len);
    }

    fn listen(&self) {
        self.slave_listen();
    }
}

impl hil::i2c::I2CMasterSlave for I2CHw {}