1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
//! Implementation of the SAM4L USART peripheral.
//!
//! Supports UART and SPI master modes.

use core::cell::Cell;
use core::cmp;
use dma;
use kernel::ReturnCode;
use kernel::common::VolatileCell;
// other modules
use kernel::hil;
// local modules
use pm;

// Register map for SAM4L USART
#[repr(C)]
struct USARTRegisters {
    cr: VolatileCell<u32>, // 0x00
    mr: VolatileCell<u32>,
    ier: VolatileCell<u32>,
    idr: VolatileCell<u32>,
    imr: VolatileCell<u32>,
    csr: VolatileCell<u32>,
    rhr: VolatileCell<u32>,
    thr: VolatileCell<u32>,
    brgr: VolatileCell<u32>,
    rtor: VolatileCell<u32>,
    ttgr: VolatileCell<u32>, // 0x28
    _reserved0: [VolatileCell<u32>; 5],
    fidi: VolatileCell<u32>, // 0x40
    ner: VolatileCell<u32>,
    _reserved1: VolatileCell<u32>,
    ifr: VolatileCell<u32>,
    man: VolatileCell<u32>,
    linmr: VolatileCell<u32>,
    linir: VolatileCell<u32>,
    linbrr: VolatileCell<u32>, // 0x5C
    _reserved2: [VolatileCell<u32>; 33],
    wpmr: VolatileCell<u32>, // 0xE4
    wpsr: VolatileCell<u32>,
    _reserved3: [VolatileCell<u32>; 4],
    version: VolatileCell<u32>, // 0xFC
}

const USART_BASE_ADDRS: [*mut USARTRegisters; 4] = [
    0x40024000 as *mut USARTRegisters,
    0x40028000 as *mut USARTRegisters,
    0x4002C000 as *mut USARTRegisters,
    0x40030000 as *mut USARTRegisters,
];

#[derive(Copy, Clone, PartialEq)]
#[allow(non_camel_case_types)]
pub enum USARTStateRX {
    Idle,
    DMA_Receiving,
}

#[derive(Copy, Clone, PartialEq)]
#[allow(non_camel_case_types)]
pub enum USARTStateTX {
    Idle,
    DMA_Transmitting,
    Transfer_Completing, // DMA finished, but not all bytes sent
}

#[derive(Copy, Clone)]
enum UsartMode {
    Uart,
    Spi,
    Unused,
}

#[derive(Copy, Clone)]
enum UsartClient<'a> {
    Uart(&'a hil::uart::Client),
    SpiMaster(&'a hil::spi::SpiMasterClient),
}

pub struct USART {
    registers: *mut USARTRegisters,
    clock: pm::Clock,

    usart_mode: Cell<UsartMode>,

    usart_tx_state: Cell<USARTStateTX>,
    usart_rx_state: Cell<USARTStateRX>,

    rx_dma: Cell<Option<&'static dma::DMAChannel>>,
    rx_dma_peripheral: dma::DMAPeripheral,
    rx_len: Cell<usize>,
    tx_dma: Cell<Option<&'static dma::DMAChannel>>,
    tx_dma_peripheral: dma::DMAPeripheral,
    tx_len: Cell<usize>,

    client: Cell<Option<UsartClient<'static>>>,

    spi_chip_select: Cell<Option<&'static hil::gpio::Pin>>,
}

// USART hardware peripherals on SAM4L
pub static mut USART0: USART = USART::new(
    USART_BASE_ADDRS[0],
    pm::PBAClock::USART0,
    dma::DMAPeripheral::USART0_RX,
    dma::DMAPeripheral::USART0_TX,
);
pub static mut USART1: USART = USART::new(
    USART_BASE_ADDRS[1],
    pm::PBAClock::USART1,
    dma::DMAPeripheral::USART1_RX,
    dma::DMAPeripheral::USART1_TX,
);
pub static mut USART2: USART = USART::new(
    USART_BASE_ADDRS[2],
    pm::PBAClock::USART2,
    dma::DMAPeripheral::USART2_RX,
    dma::DMAPeripheral::USART2_TX,
);
pub static mut USART3: USART = USART::new(
    USART_BASE_ADDRS[3],
    pm::PBAClock::USART3,
    dma::DMAPeripheral::USART3_RX,
    dma::DMAPeripheral::USART3_TX,
);

impl USART {
    const fn new(
        base_addr: *mut USARTRegisters,
        clock: pm::PBAClock,
        rx_dma_peripheral: dma::DMAPeripheral,
        tx_dma_peripheral: dma::DMAPeripheral,
    ) -> USART {
        USART {
            registers: base_addr,
            clock: pm::Clock::PBA(clock),

            usart_mode: Cell::new(UsartMode::Unused),

            usart_rx_state: Cell::new(USARTStateRX::Idle),
            usart_tx_state: Cell::new(USARTStateTX::Idle),

            // these get defined later by `chip.rs`
            rx_dma: Cell::new(None),
            rx_dma_peripheral: rx_dma_peripheral,
            rx_len: Cell::new(0),
            tx_dma: Cell::new(None),
            tx_dma_peripheral: tx_dma_peripheral,
            tx_len: Cell::new(0),

            // this gets defined later by `main.rs`
            client: Cell::new(None),

            // This is only used if the USART is in SPI mode.
            spi_chip_select: Cell::new(None),
        }
    }

    pub fn set_dma(&self, rx_dma: &'static dma::DMAChannel, tx_dma: &'static dma::DMAChannel) {
        self.rx_dma.set(Some(rx_dma));
        self.tx_dma.set(Some(tx_dma));
    }

    pub fn enable_rx(&self) {
        self.enable_clock();
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let cr_val = 0x00000000 | (1 << 4); // RXEN
        regs.cr.set(cr_val);
    }

    pub fn enable_tx(&self) {
        self.enable_clock();
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let cr_val = 0x00000000 | (1 << 6); // TXEN
        regs.cr.set(cr_val);
    }

    pub fn disable_rx(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let cr_val = 0x00000000 | (1 << 5); // RXDIS
        regs.cr.set(cr_val);

        self.usart_rx_state.set(USARTStateRX::Idle);
        if self.usart_tx_state.get() == USARTStateTX::Idle {
            // TX disabled too
            self.disable_clock();
        }
    }

    pub fn disable_tx(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let cr_val = 0x00000000 | (1 << 7); // TXDIS
        regs.cr.set(cr_val);

        self.usart_tx_state.set(USARTStateTX::Idle);
        if self.usart_rx_state.get() == USARTStateRX::Idle {
            // RX disabled too
            self.disable_clock();
        }
    }

    pub fn abort_rx(&self, error: hil::uart::Error) {
        if self.usart_rx_state.get() == USARTStateRX::DMA_Receiving {
            self.disable_rx_interrupts();
            self.disable_rx();
            self.usart_rx_state.set(USARTStateRX::Idle);

            // get buffer
            let mut length = 0;
            let buffer = self.rx_dma.get().map_or(None, |rx_dma| {
                length = self.rx_len.get() - rx_dma.transfer_counter();
                let buf = rx_dma.abort_xfer();
                rx_dma.disable();
                buf
            });
            self.rx_len.set(0);

            // alert client
            self.client.get().map(|usartclient| {
                buffer.map(|buf| match usartclient {
                    UsartClient::Uart(client) => {
                        client.receive_complete(buf, length, error);
                    }
                    UsartClient::SpiMaster(_) => {}
                });
            });
        }
    }

    pub fn abort_tx(&self, error: hil::uart::Error) {
        if self.usart_tx_state.get() == USARTStateTX::DMA_Transmitting {
            self.disable_tx_interrupts();
            self.disable_tx();
            self.usart_tx_state.set(USARTStateTX::Idle);

            // get buffer
            let mut length = 0;
            let buffer = self.tx_dma.get().map_or(None, |tx_dma| {
                length = self.tx_len.get() - tx_dma.transfer_counter();
                let buf = tx_dma.abort_xfer();
                tx_dma.disable();
                buf
            });
            self.tx_len.set(0);

            // alert client
            self.client.get().map(|usartclient| {
                buffer.map(|buf| match usartclient {
                    UsartClient::Uart(client) => {
                        client.receive_complete(buf, length, error);
                    }
                    UsartClient::SpiMaster(_) => {}
                });
            });
        }
    }

    pub fn enable_tx_empty_interrupt(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        regs.ier.set(1 << 9);
    }

    pub fn disable_tx_empty_interrupt(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        regs.idr.set(1 << 9);
    }

    pub fn enable_rx_error_interrupts(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let ier_val = 0x00000000 |
            (1 <<  7) | // PARE
            (1 <<  6) | // FRAME
            (1 <<  5); //. OVRE
        regs.ier.set(ier_val);
    }

    pub fn disable_rx_interrupts(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let idr_val = 0x00000000 |
            (1 << 12) | // RXBUFF
            (1 <<  8) | // TIMEOUT
            (1 <<  7) | // PARE
            (1 <<  6) | // FRAME
            (1 <<  5) | // OVRE
            (1 << 0); //.. RXRDY
        regs.idr.set(idr_val);
    }

    pub fn disable_tx_interrupts(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let idr_val = 0x00000000 |
            (1 << 9) | // TXEMPTY
            (1 << 1); //. TXREADY
        regs.idr.set(idr_val);
    }

    pub fn disable_interrupts(&self) {
        self.disable_rx_interrupts();
        self.disable_tx_interrupts();
    }

    pub fn reset(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };

        // reset status bits, transmitter, and receiver
        let cr_val = 0x00000000 |
            (1 << 8) | // RSTSTA
            (1 << 3) | // RSTTX
            (1 <<2); //.. RSTRX
        regs.cr.set(cr_val);

        self.abort_rx(hil::uart::Error::ResetError);
        self.enable_clock(); // in case abort_rx turned them off
        self.abort_tx(hil::uart::Error::ResetError);
    }

    pub fn handle_interrupt(&self) {
        // only handle interrupts if the clock is enabled for this peripheral.
        // Now, why are we occasionally getting interrupts with the clock
        // disabled? That is a good question that I don't have the answer to.
        // They don't even seem to be causing a problem, but seemed bad, so I
        // stopped it from occurring just in case it caused issues in the
        // future.
        if self.is_clock_enabled() {
            let regs: &USARTRegisters = unsafe { &*self.registers };
            let status = regs.csr.get();
            let mask = regs.imr.get();

            // Reset status registers. We need to do this first because some
            // interrupts signal us to turn off our clock.
            regs.cr.set(1 << 8); // RSTSTA

            if status & (1 << 8) != 0 && mask & (1 << 8) != 0 {
                // TIMEOUT
                self.disable_rx_timeout();
                self.abort_rx(hil::uart::Error::CommandComplete);
            } else if status & (1 << 9) != 0 && mask & (1 << 9) != 0 {
                self.disable_tx_empty_interrupt();
                self.disable_tx();
                self.usart_tx_state.set(USARTStateTX::Idle);
            } else if status & (1 << 7) != 0 {
                // PARE
                self.abort_rx(hil::uart::Error::ParityError);
            } else if status & (1 << 6) != 0 {
                // FRAME
                self.abort_rx(hil::uart::Error::FramingError);
            } else if status & (1 << 5) != 0 {
                // OVRE
                self.abort_rx(hil::uart::Error::OverrunError);
            }
        }
    }

    fn enable_clock(&self) {
        unsafe {
            pm::enable_clock(self.clock);
        }
    }

    fn disable_clock(&self) {
        unsafe {
            pm::disable_clock(self.clock);
        }
    }

    fn is_clock_enabled(&self) -> bool {
        unsafe { pm::is_clock_enabled(self.clock) }
    }

    fn set_mode(&self, mode: u32) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        regs.mr.set(mode);
    }

    fn set_baud_rate(&self, baud_rate: u32) {
        let regs: &USARTRegisters = unsafe { &*self.registers };

        let system_frequency = pm::get_system_frequency();

        // The clock divisor is calculated differently in UART and SPI modes.
        let cd = match self.usart_mode.get() {
            UsartMode::Uart => system_frequency / (8 * baud_rate),
            UsartMode::Spi => system_frequency / baud_rate,
            _ => 0,
        };

        regs.brgr.set(cd);
    }

    /// In non-SPI mode, this drives RTS low.
    /// In SPI mode, this asserts (drives low) the chip select line.
    fn rts_enable_spi_assert_cs(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        regs.cr.set(1 << 18);
    }

    /// In non-SPI mode, this drives RTS high.
    /// In SPI mode, this de-asserts (drives high) the chip select line.
    fn rts_disable_spi_deassert_cs(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        regs.cr.set(1 << 19);
    }

    fn enable_rx_timeout(&self, timeout: u8) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let rtor_val: u32 = 0x00000000 | timeout as u32;
        regs.rtor.set(rtor_val);

        // enable timeout interrupt
        regs.ier.set((1 << 8)); // TIMEOUT

        // start timeout
        regs.cr.set((1 << 11)); // STTTO
    }

    fn disable_rx_timeout(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        regs.rtor.set(0);

        // enable timeout interrupt
        regs.idr.set((1 << 8)); // TIMEOUT
    }

    fn enable_rx_terminator(&self, _terminator: u8) {
        // XXX: implement me
        panic!("didn't write terminator stuff yet");
    }

    // for use by panic in io.rs
    pub fn send_byte(&self, byte: u8) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let thr_val: u32 = 0x00000000 | byte as u32;
        regs.thr.set(thr_val);
    }

    // for use by panic in io.rs
    pub fn tx_ready(&self) -> bool {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        let csr_val: u32 = regs.csr.get();
        let mut ret_val = false;
        if (csr_val & (1 << 1)) == (1 << 1) {
            // tx is ready
            ret_val = true;
        }
        ret_val
    }
}

impl dma::DMAClient for USART {
    fn xfer_done(&self, pid: dma::DMAPeripheral) {
        match self.usart_mode.get() {
            UsartMode::Uart => {
                // determine if it was an RX or TX transfer
                if pid == self.rx_dma_peripheral {
                    // RX transfer was completed

                    // disable RX and RX interrupts
                    self.disable_rx_interrupts();
                    self.disable_rx();
                    self.usart_rx_state.set(USARTStateRX::Idle);

                    // get buffer
                    let buffer = self.rx_dma.get().map_or(None, |rx_dma| {
                        let buf = rx_dma.abort_xfer();
                        rx_dma.disable();
                        buf
                    });

                    // alert client
                    self.client.get().map(|usartclient| {
                        buffer.map(|buf| {
                            let length = self.rx_len.get();
                            match usartclient {
                                UsartClient::Uart(client) => {
                                    client.receive_complete(
                                        buf,
                                        length,
                                        hil::uart::Error::CommandComplete,
                                    );
                                }
                                UsartClient::SpiMaster(_) => {}
                            }
                        });
                    });
                    self.rx_len.set(0);
                } else if pid == self.tx_dma_peripheral {
                    // TX transfer was completed

                    // note that the DMA has finished but TX cannot yet be disabled yet because
                    // there may still be bytes left in the TX buffer.
                    self.usart_tx_state.set(USARTStateTX::Transfer_Completing);
                    self.enable_tx_empty_interrupt();

                    // get buffer
                    let buffer = self.tx_dma.get().map_or(None, |tx_dma| {
                        let buf = tx_dma.abort_xfer();
                        tx_dma.disable();
                        buf
                    });

                    // alert client
                    self.client.get().map(|usartclient| {
                        buffer.map(|buf| match usartclient {
                            UsartClient::Uart(client) => {
                                client.transmit_complete(buf, hil::uart::Error::CommandComplete);
                            }
                            UsartClient::SpiMaster(_) => {}
                        });
                    });
                    self.tx_len.set(0);
                }
            }

            UsartMode::Spi => {
                if (self.usart_rx_state.get() == USARTStateRX::Idle
                    && pid == self.tx_dma_peripheral)
                    || pid == self.rx_dma_peripheral
                {
                    // SPI transfer was completed

                    self.spi_chip_select.get().map_or_else(
                        || {
                            // Do "else" case first. Thanks, rust.
                            self.rts_disable_spi_deassert_cs();
                        },
                        |cs| {
                            cs.set();
                        },
                    );

                    // note that the DMA has finished but TX cannot be disabled yet
                    self.usart_tx_state.set(USARTStateTX::Transfer_Completing);
                    self.enable_tx_empty_interrupt();

                    self.usart_rx_state.set(USARTStateRX::Idle);
                    self.disable_rx();

                    // get buffer
                    let txbuf = self.tx_dma.get().map_or(None, |dma| {
                        let buf = dma.abort_xfer();
                        dma.disable();
                        buf
                    });

                    let rxbuf = self.rx_dma.get().map_or(None, |dma| {
                        let buf = dma.abort_xfer();
                        dma.disable();
                        buf
                    });

                    let len = self.tx_len.get();

                    // alert client
                    self.client.get().map(|usartclient| {
                        txbuf.map(|tbuf| match usartclient {
                            UsartClient::Uart(_) => {}
                            UsartClient::SpiMaster(client) => {
                                client.read_write_done(tbuf, rxbuf, len);
                            }
                        });
                    });
                    self.tx_len.set(0);
                }
            }

            _ => {}
        }
    }
}

/// Implementation of kernel::hil::UART
impl hil::uart::UART for USART {
    fn set_client(&self, client: &'static hil::uart::Client) {
        let c = UsartClient::Uart(client);
        self.client.set(Some(c));
    }

    fn init(&self, params: hil::uart::UARTParams) {
        self.usart_mode.set(UsartMode::Uart);

        // enable USART clock
        //  must do this before writing any registers
        self.enable_clock();

        // disable interrupts
        self.disable_interrupts();

        // stop any TX and RX and clear status
        self.reset();
        self.enable_clock();

        // set USART mode register
        let mut mode = 0x00000000;
        mode |= 0x1 << 19; // OVER: oversample at 8 times baud rate
        mode |= 0x3 << 6; // CHRL: 8-bit characters
        mode |= 0x0 << 4; // USCLKS: select CLK_USART

        match params.stop_bits {
            hil::uart::StopBits::One => mode |= 0x0 << 12, // NBSTOP: 1 stop bit
            hil::uart::StopBits::Two => mode |= 0x2 << 12, // NBSTOP: 2 stop bits
        };

        match params.parity {
            hil::uart::Parity::None => mode |= 0x4 << 9, // PAR: no parity
            hil::uart::Parity::Odd => mode |= 0x1 << 9,  // PAR: odd parity
            hil::uart::Parity::Even => mode |= 0x0 << 9, // PAR: even parity
        };

        if params.hw_flow_control {
            mode |= 0x2 << 0; // MODE: hardware handshaking
        } else {
            mode |= 0x0 << 0; // MODE: normal
        }

        self.set_mode(mode);

        // Set baud rate
        self.set_baud_rate(params.baud_rate);

        self.disable_clock();
    }

    fn transmit(&self, tx_data: &'static mut [u8], tx_len: usize) {
        // enable USART clock
        //  must do this before writing any registers
        self.enable_clock();

        // quit current transmission if any
        self.abort_tx(hil::uart::Error::RepeatCallError);

        // enable TX
        self.enable_tx();
        self.usart_tx_state.set(USARTStateTX::DMA_Transmitting);

        // set up dma transfer and start transmission
        self.tx_dma.get().map(move |dma| {
            dma.enable();
            dma.do_xfer(self.tx_dma_peripheral, tx_data, tx_len);
            self.tx_len.set(tx_len);
        });
    }

    fn receive(&self, rx_buffer: &'static mut [u8], rx_len: usize) {
        // enable USART clock
        //  must do this before writing any registers
        self.enable_clock();

        // quit current reception if any
        self.abort_rx(hil::uart::Error::RepeatCallError);

        // truncate rx_len if necessary
        let mut length = rx_len;
        if rx_len > rx_buffer.len() {
            length = rx_buffer.len();
        }

        // enable RX
        self.enable_rx();
        self.enable_rx_error_interrupts();
        self.usart_rx_state.set(USARTStateRX::DMA_Receiving);

        // set up dma transfer and start reception
        self.rx_dma.get().map(move |dma| {
            dma.enable();
            dma.do_xfer(self.rx_dma_peripheral, rx_buffer, length);
            self.rx_len.set(rx_len);
        });
    }
}

impl hil::uart::UARTAdvanced for USART {
    fn receive_automatic(&self, rx_buffer: &'static mut [u8], interbyte_timeout: u8) {
        // enable USART clock
        //  must do this before writing any registers
        self.enable_clock();

        // quit current reception if any
        self.abort_rx(hil::uart::Error::RepeatCallError);

        // enable RX
        self.enable_rx();
        self.enable_rx_error_interrupts();
        self.usart_rx_state.set(USARTStateRX::DMA_Receiving);

        // enable receive timeout
        self.enable_rx_timeout(interbyte_timeout);

        // set up dma transfer and start reception
        self.rx_dma.get().map(move |dma| {
            dma.enable();
            let length = rx_buffer.len();
            dma.do_xfer(self.rx_dma_peripheral, rx_buffer, length);
            self.rx_len.set(length);
        });
    }

    fn receive_until_terminator(&self, rx_buffer: &'static mut [u8], terminator: u8) {
        // enable USART clock
        //  must do this before writing any registers
        self.enable_clock();

        // quit current reception if any
        self.abort_rx(hil::uart::Error::RepeatCallError);

        // enable RX
        self.enable_rx();
        self.enable_rx_error_interrupts();
        self.usart_rx_state.set(USARTStateRX::DMA_Receiving);

        // enable receive terminator
        self.enable_rx_terminator(terminator);

        // set up dma transfer and start reception
        self.rx_dma.get().map(move |dma| {
            dma.enable();
            let length = rx_buffer.len();
            dma.do_xfer(self.rx_dma_peripheral, rx_buffer, length);
            self.rx_len.set(length);
        });
    }
}

/// SPI
impl hil::spi::SpiMaster for USART {
    type ChipSelect = Option<&'static hil::gpio::Pin>;

    fn init(&self) {
        let regs: &USARTRegisters = unsafe { &*self.registers };

        self.usart_mode.set(UsartMode::Spi);
        self.enable_clock();

        // Set baud rate, default to 2 MHz.
        self.set_baud_rate(2000000);

        let mode =
            0xe << 0 /* SPI Master mode */
            | 0 << 4 /* USCLKS*/
            | 0x3 << 6 /* Character Length 8 bits */
            | 0x4 << 9 /* No Parity */
            | 1 << 18 /* USART drives the clock pin */;
        self.set_mode(mode);

        // Disable transmitter timeguard
        regs.ttgr.set(4);

        self.disable_clock();
    }

    fn set_client(&self, client: &'static hil::spi::SpiMasterClient) {
        let c = UsartClient::SpiMaster(client);
        self.client.set(Some(c));
    }

    fn is_busy(&self) -> bool {
        return false;
    }

    fn read_write_bytes(
        &self,
        mut write_buffer: &'static mut [u8],
        read_buffer: Option<&'static mut [u8]>,
        len: usize,
    ) -> ReturnCode {
        self.enable_tx();
        self.enable_rx();

        // Calculate the correct length for the transmission
        let buflen = read_buffer.as_ref().map_or(write_buffer.len(), |rbuf| {
            cmp::min(rbuf.len(), write_buffer.len())
        });
        let count = cmp::min(buflen, len);

        self.tx_len.set(count);

        // Set !CS low
        self.spi_chip_select.get().map_or_else(
            || {
                // Do the "else" case first. If a CS pin was provided as the
                // CS line, we use the HW RTS pin as the CS line instead.
                self.rts_enable_spi_assert_cs();
            },
            |cs| {
                cs.clear();
            },
        );

        // Check if we should read and write or just write.
        if read_buffer.is_some() {
            // We are reading and writing.
            read_buffer.map(|rbuf| {
                self.tx_dma.get().map(move |dma| {
                    self.rx_dma.get().map(move |read| {
                        // Do all the maps before starting anything in case
                        // they take too much time.

                        // Start the write transaction.
                        self.usart_tx_state.set(USARTStateTX::DMA_Transmitting);
                        self.usart_rx_state.set(USARTStateRX::Idle);
                        dma.enable();
                        dma.do_xfer(self.tx_dma_peripheral, write_buffer, count);

                        // Start the read transaction.
                        self.usart_rx_state.set(USARTStateRX::DMA_Receiving);
                        read.enable();
                        read.do_xfer(self.rx_dma_peripheral, rbuf, count);
                    });
                });
            });
        } else {
            // We are just writing.
            self.tx_dma.get().map(move |dma| {
                self.usart_tx_state.set(USARTStateTX::DMA_Transmitting);
                self.usart_rx_state.set(USARTStateRX::Idle);
                dma.enable();
                dma.do_xfer(self.tx_dma_peripheral, write_buffer, count);
            });
        }

        ReturnCode::SUCCESS
    }

    fn write_byte(&self, val: u8) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        regs.cr.set((1 << 4) | (1 << 6));

        regs.thr.set(val as u32);
    }

    fn read_byte(&self) -> u8 {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        regs.rhr.get() as u8
    }

    fn read_write_byte(&self, val: u8) -> u8 {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        regs.cr.set((1 << 4) | (1 << 6));

        regs.thr.set(val as u32);
        while regs.csr.get() & (1 << 0) == 0 {}
        regs.rhr.get() as u8
    }

    /// Pass in a None to use the HW chip select pin on the USART (RTS).
    fn specify_chip_select(&self, cs: Self::ChipSelect) {
        self.spi_chip_select.set(cs);
    }

    /// Returns the actual rate set
    fn set_rate(&self, rate: u32) -> u32 {
        self.enable_clock();
        self.set_baud_rate(rate);

        // Calculate what rate will actually be
        let system_frequency = pm::get_system_frequency();
        let cd = system_frequency / rate;
        system_frequency / cd
    }

    fn get_rate(&self) -> u32 {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        let system_frequency = pm::get_system_frequency();
        let cd = regs.brgr.get() & 0xFFFF;
        system_frequency / cd
    }

    fn set_clock(&self, polarity: hil::spi::ClockPolarity) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        let mode = regs.mr.get();

        match polarity {
            hil::spi::ClockPolarity::IdleLow => {
                regs.mr.set(mode & !(1 << 16));
            }
            hil::spi::ClockPolarity::IdleHigh => {
                regs.mr.set(mode | (1 << 16));
            }
        }
    }

    fn get_clock(&self) -> hil::spi::ClockPolarity {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        let mode = regs.mr.get();

        match mode & (1 << 16) {
            0 => hil::spi::ClockPolarity::IdleLow,
            _ => hil::spi::ClockPolarity::IdleHigh,
        }
    }

    fn set_phase(&self, phase: hil::spi::ClockPhase) {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        let mode = regs.mr.get();

        match phase {
            hil::spi::ClockPhase::SampleLeading => {
                regs.mr.set(mode | (1 << 8));
            }
            hil::spi::ClockPhase::SampleTrailing => {
                regs.mr.set(mode & !(1 << 8));
            }
        }
    }

    fn get_phase(&self) -> hil::spi::ClockPhase {
        let regs: &USARTRegisters = unsafe { &*self.registers };
        self.enable_clock();
        let mode = regs.mr.get();

        match mode & (1 << 8) {
            0 => hil::spi::ClockPhase::SampleLeading,
            _ => hil::spi::ClockPhase::SampleTrailing,
        }
    }

    // These two functions determine what happens to the chip
    // select line between transfers. If hold_low() is called,
    // then the chip select line is held low after transfers
    // complete. If release_low() is called, then the chip select
    // line is brought high after a transfer completes. A "transfer"
    // is any of the read/read_write calls. These functions
    // allow an application to manually control when the
    // CS line is high or low, such that it can issue multi-byte
    // requests with single byte operations.
    fn hold_low(&self) {
        unimplemented!("USART: SPI: Use `read_write_bytes()` instead.");
    }

    fn release_low(&self) {
        unimplemented!("USART: SPI: Use `read_write_bytes()` instead.");
    }
}